Category Archives: Math

Non-standard Models of Arithmetic 15

Prev TOC Next

The Truth about Truth

MW: A little while back, I noted something delicious about the history of mathematical logic:

  • Gödel’s two most famous results are the completeness theorem and the incompleteness theorem.
  • Tarski’s two most famous results are the undefinability of truth and the definition of truth.

Continue reading

Leave a comment

Filed under Conversations, Peano Arithmetic

Algebraic Geometry Jottings 18

Prev TOC Next

Up till now, I’ve been using power series to parametrize branches:

x(t) = a0+a1t+a2t2+ ⋯,      y(t) = b0+b1t+b2t2+ ⋯

If the branch passes through the origin, then a0=b0=0. In the last post, we established Facts 4 and 5, assuming that y(t)=t for all branches, so x(t) = a0+a1y+a2y2+ ⋯.

Continue reading

Leave a comment

Filed under Algebraic Geometry

Algebraic Geometry Jottings 17

Prev TOC Next

At last we come to Kendig’s proof of Bézout’s Theorem. Although not long, it will take me a few posts to appreciate it in full.

Continue reading

Leave a comment

Filed under Algebraic Geometry

Algebraic Geometry Jottings 16

Prev TOC Next

The Resultant, Episode 5: Inside the Episode

The double-product form for the resultant:

\text{res}_x(E,F) = a_m^n(y) b_n^m(y) \prod_{i=1}^m\prod_{j=1}^n (u_i-v_j)  (1)

implies Fact 3:

Continue reading

Leave a comment

Filed under Algebraic Geometry

Algebraic Geometry Jottings 15

Prev TOC Next

The Resultant, Episode 5 (The Finale)

Recap: The setting is an integral domain R, with fraction field K, and extension field L of K in which E(x) and F(x) split completely. E(x) and F(x) have coefficients in R. E(x) has degree m, F(x) degree n; we assume m,n>0. The main special case for us: R=k[y], K=k(y), so R[x]=k[x,y], and E and F are polynomials in x and y. As always, we assume k is algebraically closed.

Continue reading

Leave a comment

Filed under Algebraic Geometry

Algebraic Geometry Jottings 14

Prev TOC Next

The Resultant, Episode 4

This episode has one sole purpose: to show that the two formulas for the resultant are equivalent. The next episode, the finale, will tie up some loose ends.

Continue reading

Leave a comment

Filed under Algebraic Geometry

Weierstrass’s Smackdown of Dirichlet’s Principle

In 1856 Dirichlet made the following claim in a lecture:

Continue reading

Leave a comment

Filed under Analysis, History

Escher’s Toroidal Print Gallery

If Art+Math brings one person to mind, it’s Escher. His tessellations present the best-known instance, but he did a lot more than that.

In April 2003, the mathematicians Bart de Smit and Hendrik Lenstra wrote a delightful article, Escher and the Droste effect, about Escher’s lithograph Prentententoonstelling. They pointed out that

We shall see that the lithograph can be viewed as drawn on a certain elliptic curve over the field of complex numbers…

Continue reading

Leave a comment

Filed under Analysis, Geometry

Algebraic Geometry Jottings 13

Prev TOC Next

The Resultant, Episode 3: Inside the Episode

So we have, at long last, several expressions for the resultant:

Continue reading

Leave a comment

Filed under Algebraic Geometry

Wallpaper Groups

Escher: Alhambra Sketch

I first learned as a kid that “there are only 17 basically different wallpapers” from W.W.Sawyer’s Prelude to Mathematics. (The quote appears on p.102. Aside: this remains an excellent gift for a youngster with a yen for math.) I remember my father pointing out the absurdity of this claim: are all mural wallpapers of van Gogh’s paintings basically the same?

Continue reading

2 Comments

Filed under Geometry, Physics