Category Archives: Conversations

Nonstandard Models of Arithmetic 30

Prev TOC Next

MW: Time to finish off Enayat’s Theorem 7:

Theorem 7: Every countable recursively saturated model N of PA+ΦT is a T-standard model of PA.

Continue reading

Leave a comment

Filed under Conversations, Peano Arithmetic

Nonstandard Models of Arithmetic 29

Prev TOC Next

MW: We’re still going through Enayat’s proof of his Theorem 7:

Theorem 7: Every countable recursively saturated model N of PA+ΦT is a T-standard model of PA.

Continue reading

Leave a comment

Filed under Conversations, Peano Arithmetic

Nonstandard Models of Arithmetic 28

Prev TOC Next

MW: I ended the last post with a puzzle. Here it is again, in more detail.

Continue reading

3 Comments

Filed under Conversations, Peano Arithmetic

Nonstandard Models of Arithmetic 27

Prev TOC Next

MW: Enayat’s second major result is:

Theorem 7: Every countable recursively saturated model of PA+ΦT is a T-standard model of PA.

Continue reading

Leave a comment

Filed under Conversations, Peano Arithmetic

Nonstandard Models of Arithmetic 24

Prev TOC Next

Next Paris-Harrington post

MW: Indicators: we don’t need to discuss these, to prove the Paris-Harrington theorem. But I think they offer valuable insight.

Continue reading

Leave a comment

Filed under Conversations, Peano Arithmetic

Nonstandard Models of Arithmetic 23

Prev TOC Next

MW: OK! So, we’re trying to show that M, the downward closure of B in N, is a structure for L(PA).  In other words, M is closed under successor, plus, and times. I’m going to say, M is a supercut of N. The term cut means an initial segment closed under successor (although some authors use it just to mean initial segment).

Continue reading

Leave a comment

Filed under Conversations, Peano Arithmetic

Non-standard Models of Arithmetic 22

Prev TOC Next

MW: So we have our setup: BMN, with N a model of PA, B a set of “diagonal indiscernibles” (whatever those are) in N, and M the downward closure of B in N. So B is cofinal in M, and M is an initial segment of N. I think we’re not going to go over the proof line by line; instead, we’ll zero in on interesting aspects. Where do you want to start?

Continue reading

Leave a comment

Filed under Conversations, Peano Arithmetic

Non-standard Models of Arithmetic 21

Prev TOC Next
Previous Paris-Harrington post

Bruce Smith joins the conversation, returning to a previous topic: the Paris-Harrington theorem. (Discussion of the Enayat paper will resume soon.)

Continue reading

Leave a comment

Filed under Conversations, Peano Arithmetic

Non-standard Models of Arithmetic 20

Prev TOC Next
Next Enayat post

Trudy Campbell

MW: OK, let’s recap the setup: we have a three-decker ωUUV. So far as U is concerned, ωU is the “real, true omega”. V knows it isn’t. Enayat’s question: what properties must an omega have, for it to be the omega of a model of T? Here T is a recursively axiomatizable extension of ZF, and U is a model of it.

Continue reading

1 Comment

Filed under Conversations, Peano Arithmetic

Nonstandard Arithmetic: A Long Comment Thread

TOC Post 7 Post 8

Posts 7 and 8 developed an extensive comment thread, mainly between Bruce Smith and John Baez. It was hard to follow in that format, so I converted it to a separate webpage.

Topics: (a) Why do standard models of ZF have standard ω’s? (b) Interactions between the Infinity Axiom and the Foundation Axiom (aka Regularity). (c) The compactness theorem. (d) The correspondence between PA and “ZF with infinity negated”: nonstandard numbers vs. ill-founded sets, and the Kaye-Wong paper (cited in post 8).

TOC Post 7 Post 8

33 Comments

Filed under Conversations, Peano Arithmetic