Author Archives: Michael Weiss

First-Order Categorical Logic 2

Prev TOC Next

MW: So let’s see. Last time we talked about the functor B from the category FinSet to the category BoolAlg of boolean algebras. Liberal infusions of coffee convinced you that B is covariant; I accidentally suggested it was contravariant. I think I’ve come round to your position, but I still have a couple of things I want to say on the matter. If it won’t be too confusing for our readers.

JB: Okay.  If we’re planning to talk more about the variance, it’s probably good to start out by getting the reader a bit confused.  I used to always be confused about it myself.  Then I finally felt I had it all straightened out.  Then you shocked me by arguing that it worked the opposite way.  Your argument was very sneaky.

Continue reading

Leave a comment

Filed under Categories, Conversations, Logic

Simple Sets and the Recursion Theorem

These notes on Simple Sets are a grabbag about the simple sets of recursion theory. If you don’t know what those are, you probably are not interested, but the Wikipedia article is nice and short and gives the basics.

The last result uses the “shiny black box” (see below), which seems like cheating, but isn’t!

I wrote up the notes sometime in the 1980s based on two papers, and on a lecture by Michael Stob at MIT (reporting on joint work with Maas and Shore). They discuss effectively simple sets and promptly simple sets.

Continue reading

2 Comments

Filed under Logic

Why “atomic bomb” instead of “nuclear”?

Why do we (mostly) say atomic bomb instead of nuclear bomb, which is technically more correct? This was asked on the History of Science and Math stackexchange. Here’s my answer.

Continue reading

Leave a comment

Filed under History, Physics

Non-standard Models of Arithmetic 9

Prev TOC Next

MW: Time to talk about the Paris-Harrington theorem. Originally I thought I’d give a “broad strokes” proof, but then I remembered what you once wrote: keep it fun, not a textbook. Anyway, Katz and Reimann do a nice job for someone who wants to dive into the details, without signing up for a full-bore grad course in model theory. So I’ll say a bit about the “cast of characters” (i.e., central ideas), and why I think they merit our attention.

Continue reading

3 Comments

Filed under Conversations, Peano arithmetic

Non-standard Models of Arithmetic 8

Prev TOC Next

JB: So, you were going to tell me a bit how questions about the universe of sets cast their shadows down on the world of Peano arithmetic.

MW: Yup. There are few ways to approach this. Mainly I want to get to the Paris-Harrington theorem, which Enayat name-checks.

First though I should do some table setting of my own. There’s a really succinct way to compare ZF with PA: PA = ZF − infinity!

Continue reading

6 Comments

Filed under Conversations, Peano arithmetic

Non-standard Models of Arithmetic 7

Prev TOC Next

MW: Our goal for the next few posts is to understand Enayat’s paper

• Ali Enayat, Standard models of arithmetic.

JB: Yee-hah!

MW: I’m going to take a leisurely approach, with “day trips” to nearby attractions (or Sehenswürdigkeiten, in the delightful German phrase), but still trying not to miss our return flight.

Also, I know you know a lot of this stuff. But unless we’re the only two reading this (in which case, why not just email?), I won’t worry about what you know. I’ll just pretend I’m explaining it to a younger version of myself—the one who often murmured, “Future MW, just what does this mean?”

Continue reading

Leave a comment

Filed under Conversations, Peano arithmetic

Friedberg’s Enumeration without Duplication

Recursively enumerable (r.e.) sets are “semi-decidable”: if x belongs to an r.e. set W, then there’s a terminating computation proving that fact. But there may not be any way to verify that x does not belong to W. The founding theorem of recursion theory—the unsolvability of the Halting Problem—furnishes an r.e., non-recursive set. For this set, we have a program listing what’s in W, but no program listing what’s out.

Continue reading

Leave a comment

Filed under Logic