Models of True Arithmetic that are not Omegas

Michael Weiss

By an ω , we mean ω^V where $V \models ZF$.

Theorem: Any nonstandard model of PA has an elementary submodel which is not an ω .

Proof: Let M be the model. There is a countable collection \mathcal{F} of Skolem functions such that if $A \subseteq M$ is closed under \mathcal{F} , then $A \preceq M$. Let $\{f_n | n \in \mathbb{N}\}$ be an enumeration of the compositions of functions in \mathcal{F} , so that

$$N_a = \{f_n(a) | n \in \mathbb{N}\}$$

is the closure of $\{a\}$ under \mathcal{F} . If a is nonstandard, then $N=N_a$ will be the desired submodel.

To show that N is not an ω , we first make three observations:

1. For any $n \in \mathbb{N}$, the relation $f_n(x) = y$ (in x and y) is definable in PA, say by a formula

$$\varphi_n(x,y) \equiv f_n(x) = y$$

2. The relation $f_n(x) = y$ in n, x, and y, is definable in ZF, say by a formula

$$\Phi(n, x, y) \equiv f_n(x) = y$$

3. For all $n \in \mathbb{N}$,

$$ZF \vdash \forall x, y[\varphi_n(x,y) \leftrightarrow \Phi(n,x,y)]$$

By (1), we can define $f_n(x)$ inside N for all $n \in \mathbb{N}$. Since $N \leq M$, this agrees with the f_n obtained from M.

By (2), we can define F(n,x) in V for any $V \models \mathrm{ZF}$. (F will be a function $\omega^V \times \omega^V \to \omega^V$.)

By (3), if $N = \omega^V$ then for all $n \in \mathbb{N}$, $V \models (\forall x \in \omega) f_n(x) = F(n, x)$. So $F(n, \cdot) \equiv f_n(\cdot)$.

Now suppose $N = \omega^V$ for some $V \models ZF$. Then

$$N = \{f_n(a)|n \in \mathbb{N}\} \subseteq \{F(n,a)|n < a\} = N$$

so $\{F(n,a)|n < a\} = N = \omega^V$. But $\{F(n,a)|n < a\}$ is definable in V, and in fact

$$V \models [\{F(n, a) | n < a\} \text{ is finite}]$$

This contradiction proves the theorem.